Developing BiCOR and CORS methods for coupled Sylvester-transpose and periodic Sylvester matrix equations
نویسندگان
چکیده
منابع مشابه
An accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations
In this paper, an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed. The convergence analysis of the algorithm is investigated. We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions. Finally, some numerical examples are given to demons...
متن کاملTools for Structured Matrix Computations: Stratifications and Coupled Sylvester Equations
Developing theory, algorithms, and software tools for analyzing matrix pencils whose matrices have various structures are contemporary research problems. Such matrices are often coming from discretizations of systems of differential-algebraic equations. Therefore preserving the structures in the simulations as well as during the analyses of the mathematical models typically means respecting the...
متن کاملThe coupled Sylvester-transpose matrix equations over generalized centro-symmetric matrices
In this paper, we present an iterative algorithm for solving the following coupled Sylvester-transpose matrix equations q ∑ j=1 ( AijXjBij + CijX j Dij ) = Fi, i = 1, 2, . . . , p, over the generalized centro-symmetric matrix group (X1, X2, . . . , Xq). The solvability of the problem can be determined by the proposed algorithm, automatically. If the coupled Sylvester-transpose matrix equations ...
متن کاملDirect Methods for Matrix Sylvester and Lyapunov Equations
We revisit the two standard dense methods for matrix Sylvester and Lyapunov equations: the Bartels-Stewart method for A1X +XA2 +D = 0 and Hammarling’s method for AX + XA + BB = 0 with A stable. We construct three schemes for solving the unitarily reduced quasitriangular systems. We also construct a new rank-1 updating scheme in Hammarling’s method. This new scheme is able to accommodate a B wit...
متن کاملCoupled Sylvester-type Matrix Equations and Block Diagonalization
We prove Roth-type theorems for systems of matrix equations including an arbitrary mix of Sylvester and ⋆-Sylvester equations, in which the transpose or conjugate transpose of the unknown matrices also appear. In full generality, we derive consistency conditions by proving that such a system has a solution if and only if the associated set of 2× 2 block matrix representations of the equations a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2015
ISSN: 0307-904X
DOI: 10.1016/j.apm.2015.01.026